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Abstract 
 

This study concerns the lattice Boltzmann method (LBM) for shallow water flow of dam-
break problems, especially in wet-dry transitions where water flow from a wet area to a dry area. This 
problem of wetting-drying interface is known in literature that can cause difficulty for a standard LBM. 
In this study, the Taylor expansion and Chapman-Enskog procedure are considered to handle the 
problem without any spurious assumption, (Liu & Zhou, 2014).  Moreover, the bed slope and the bed 
friction are also included in the scheme. The benchmark problems are also presented to confirm the 
study of the wet-dry problems.  
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Introduction  
 

 Long-wave phenomena are commonly exist in nature such as wave run-up, Tsunami and 
solute transport in blood vessel, etc. One way to model these phenomena is to use the so called shallow 
water equations (SWE), which is powerful and efficient to simulate long-wave flow phenomena. 
Althrough according to much research have demonstrated the solving of the problem described by 
SWE using traditional numerical methods – such as the finite different method (FDM), the finite 
element method (FEM) and the finite volume method (FVM) – to simulate those problems with 
complex topography. These seem to be difficult to manage their codes and can cause many mistakes. 

The new numerical method called lattice Boltzmann method (LBM) was developed and introduced 
in recent decades based on kenitic model (Succi, 2001). LBM is the mesoscopic method with simple 
arithmetic of just one parameter, the distribution function which is the function that describes the fluids 
particles. Lattice Boltzmann equation is the key equation of this method consisting of two crucial steps, 
collision step and the streaming step. In this equation the distribution function of the previous time is needed 
to calculate the distribution function of the present time. The connection between the distribution function and 
the unknown variables like the water velocity and the water depth is efficient. These give a better way to 
manage the code to calculate them all to save computer resources.                         

There are many results involved the LBM for shallow water flows. Rakwongwan & Maleewong 
(2013) solved the dam – break problem described by shallow water equations using LBM without the source 
terms such as bed slope and bed friction. Zhou (2002) presented the simulation of LBM for shallow water 
flow with the simple source terms by including these source terms in the lattice Boltzmann equation. Zhou 
(2011) overcomes the LBM for shallow water problem with the complex source terms by using the idea of 
centre scheme to manage the order of the accuracy of the source term. For the problem with the wetting – 
drying interface, the standard LBM does not work in calculation. However, some researches use the artificial 
assumptions such as a thin film and the extrapolation of unknow variable (Shafiai, 2013). Eventually, Liu & 
Zhou (2014) introduced the approach to solve this problem with wet – dry front by using the Taylor expansion 
and Chapman – Enskog procedure. In this work, we modify the Liu & Zhou (2014)’s idea for solving some 
model problem with wet – dry interface. 
 
Method  
 

 1. Shallow water equations 
In this section, the shallow water equations are introduced as the governing equation of the 

long wave phenomena. The shallow water equations with the source terms of bed slope and bed friction 
can be expressed as  
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where i  and j  are indices computed based on the Einstein summation convention, h  is the water depth, iu  

are the velocity components in i  directions, t  is time, and  29.81 /g m s≈  is the gravitational 
acceleration. Here, υ  is the kinematic viscosity definded by 
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where τ  is the relaxation time and sC  is the local sound speed.   
 
The force term is described by 

                                                                      ,b bi
i

i

zF gh
x

τ
ρ

∂
= − −

∂
                                                                  (4) 

where bz is bed elevation, ρ is the fluid density, and biτ is the bed shear stress expressed as 

                                                                                ,bi b i j jC u u uτ ρ=                                                            (5) 

with the bed friction coefficient bC .  

 

2. Lattice Boltzmann method 
In this study, 1D problem is considered the D1Q3 lattice shownd in Figure 1. 

 

 

 
The lattice Boltzmann equation with the 

distribution function, fα , can be written as 
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where eα  is the vector of the particle velocity at the α direction, ieα  is the component of eα , wα  is 
the  

weighting factor constant ( wα  =1/4 for D1Q3 ) , and eqfα is the equilibrium distribution function. For 
D1Q3,  
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where /e x t= ∆ ∆ : when x∆  is the lattice step size, and t∆  is the time step size. 
By using the present distribution function, we acquire the unknown variables by the subsequent 
relations 
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Figure 1 the D1Q3 lattice 
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The boundary conditions can be specified corresponding to the boundary of the problem (Zhou, 2004), 
except the problems with the wetting – drying front, which must be derived according to the wet – dry 
condition. 
  

 
               3. The wet – dry boundary condition 
 In this part, we follow the Liu & Zhou (2014)’s idea by using both mathematical concepts (the 
Taylor expansion and Chapman – Enskog procedure) for the non – equilibrium distribution function 
(Latt & Chopard, 2005), we obtain the following formula 
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 This formula is used when fα  move from the dry lattice to the wet lattice, see Figure 2, 

where fα    

is ( )2 1f d .  For ( )0 1f d , it can be calculated by the average of 0f  at its neighboring lattice as 
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Figure 2 the wetting – drying interface. 
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4. Algorithm 
 The wet – dry interface based on an algorithm of Liu & Zhou (2014) is described as follow: 

 

 
 

Figure 3 the algorithm for the wet – dry interface 
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Numerical results 
 A 1D wave run – down over a sloping bed 
 This example is studied in order to show the wet – dry interface when the bed topography 

emerses  
from the water surface. The channel is 500 m long with assigned 100 lattices. The bed topography is 

the variable  
of sloping bed expressed as 
 

( ) 1.4 0.0028bz x x= −  
 
 At the first step, the water level is set at 1.75 m hight as the initial condition. The solid 

boundary is  
specified at 0x =  m and the inlet boundary at 500x =  m where the water depth is governed by 
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where 0 1h =   m is the reference water surface, the amplitude if tidal wave 0.75x =  m, the tidal 

peried   
3600T =  s, the Manning coefficient 0.03bn = and the relaxation time 0.7τ = . The numerical 

results are  
shown in the following where the red line represents the bed topography and the blue line represents 

the water  
surface. 
    

  

Figure 4.1 0.00 .t s=  Figure 4.2 50.00 .t s=  
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Figure 4.3 100.00 .t s=  Figure 4.4 125.00 .t s=  

  

Figure 4.5 135.00 .t s=  Figure 4.6 142.50 .t s=  

  

Figure 4.7 145.00 .t s=  Figure 4.8 150.00 .t s=  

 

Figure 4 Graph of the water surface and the bed topography. 
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 From the above graphs, the figures 4.1, 4.2, 4.3 and 4.4 show that the weter surface (the blue 
line) is  

squeezing up to the bed topography (the red line). The figures 4.5, 4.6, 4.7 and 4.8 show that the bed 
topography  

emerses from the water surface, then the wet – dry interface occurs. Our new boundary condition is 
used. All of  

these results show that the wave are running down from the shoreline. 
 
 
 
CONCLUSION 
 In this work, the lattice Boltzmann method with new boundary condition for the wet – dry 

interface can  
be applied to solve the shallow water flow problem when the wet – dry interface occurs under the 

variable of  
sloping bed. But if we use the complex bed topography instead of the variable of sloping bed. There are 

some  
mistakes which are the key point to research and develope for this problem. 
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